

Aaron Mishkin^{1,2}, Frederik Kunstner^{1,3}, Didrik Nielsen¹, Mark Schmidt², Mohammad Emtiyaz Khan¹ ¹Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan ²University of British Columbia, Vancouver, Canada, ³École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Introduction

Motivation:

- Uncertainty estimation is essential to make reliable decisions based on the predictions of deep models, but is computationally challenging.
- It is difficult to form even a Gaussian approximation to the posterior for large deep models.
- Mean-field methods reduce the computational complexity, but yield poor estimates of the uncertainty.

Contributions:

- We propose a new stochastic, low-rank, approximate natural-gradient (SLANG) method for Gaussian variational inference.
- Our method estimates a "low-rank plus diagonal" covariance matrix based solely on back-propagated gradients.
- SLANG is faster and more accurate than mean-field methods, and performs comparably to state-of-the-art methods.

Natural Gradient Variational Inference

Given a deep model $p(\mathcal{D}|\theta)$ with weights θ , Gaussian Variational **Inference** computes a Gaussian approximation $q(\theta) := \mathcal{N}(\theta; \mu, \Sigma)$ to the posterior by maximizing the ELBO:

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbb{E}_{\boldsymbol{q}} \left[\underbrace{\log \boldsymbol{p}(\mathcal{D}|\boldsymbol{\theta})}_{\text{Likelihood}} + \underbrace{\log \mathcal{N}(\boldsymbol{\theta} \mid \boldsymbol{0}, \boldsymbol{I}/\lambda)}_{\text{Prior}} - \underbrace{\log \boldsymbol{q}(\boldsymbol{\theta})}_{\text{Approximation}} \right]$$

Gradient-based methods optimize the ELBO using the stochastic gradient updates (t is the iteration, γ_t is the learning rate)

 $\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t - \gamma_t \hat{\nabla}_{\boldsymbol{\mu}} \mathcal{L}_t, \qquad \qquad \boldsymbol{\Sigma}_{t+1} = \boldsymbol{\Sigma}_t - \gamma_t \hat{\nabla}_{\boldsymbol{\Sigma}} \mathcal{L}_t.$

Gradient descent uses Euclidean geometry and may converge slowly.

Natural Gradient methods do steepest descent in the space of realizable approximations $q(\theta)$ by optimizing on the Riemannian manifold. This is expected to converge faster and gives the update [3]

 $\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t - \beta_t \boldsymbol{\Sigma}_{t+1} \hat{\nabla}_{\boldsymbol{\mu}} \mathcal{L}_t \qquad \boldsymbol{\Sigma}_{t+1}^{-1} = (1 - \beta_t) \boldsymbol{\Sigma}_t^{-1} + \beta_t \hat{\nabla}_{\boldsymbol{\Sigma}} \mathcal{L}_t.$ Both methods require storing the covariance Σ_t , which is infeasible for large models. We build upon Variational Online Gauss-Newton [4], which can be modified to learn a low-rank approximation.

Variational Online Gauss-Newton approximates the Hessian with the empirical Fisher Information matrix $\hat{\mathbf{G}}(\boldsymbol{\theta}_t)$. This gives

$$\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t - \beta_t \boldsymbol{\Sigma}_{t+1} \left[\hat{\boldsymbol{g}}(\boldsymbol{\theta}_t) + \lambda \boldsymbol{\mu}_t \right] \\ \boldsymbol{\Sigma}_{t+1}^{-1} = (1 - \beta_t) \boldsymbol{\Sigma}_t^{-1} + \beta_t \left[\hat{\boldsymbol{G}}(\boldsymbol{\theta}_t) + \lambda \boldsymbol{I} \right],$$

where $\hat{g}(\theta_t)$ is the gradient and

$$\hat{\mathbf{G}}(\boldsymbol{ heta}_t) = rac{1}{M} \sum_{i=1}^M g_i(\boldsymbol{ heta}_t) g_i(\boldsymbol{ heta}_t)^{ op}$$

is the empirical Fisher Information matrix for $p(\mathcal{D} \mid \theta_t)$ computed with a minibatch of size M and individual gradients $g_i(\theta_t)$.

SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient

SLANG

Algorithm 1: SLANG	
Require: Data \mathcal{D} , hyperparameters M_{i}	, $L, \lambda, \alpha, \beta$ 1: A
1: Initialize μ , U , d	2: V
2: $\delta \leftarrow (1 - \beta)$	3: re
3: while not converged do	
4: $oldsymbol{ heta} \leftarrow \texttt{fast}_\texttt{sample}(oldsymbol{\mu}, oldsymbol{U}, oldsymbol{d})$	Algor
5: $\mathcal{M} \leftarrow \text{sample a minibatch}$	
6: $[\mathbf{g}_1,, \mathbf{g}_M] \leftarrow \mathtt{backprop}(\mathcal{D}_M, \boldsymbol{\theta})$	1: <i>ε</i>
7: $\mathbf{V} \leftarrow \texttt{fast_eig}(\delta \mathbf{u}_1,, \delta \mathbf{u}_L, \beta \mathbf{g}_1,, \delta \mathbf{u}_L, \beta \mathbf{g}_L, \beta $, $\beta g_M, L$) 2: V
8: $\Delta_d \leftarrow \sum_{i=1}^L \delta \mathbf{u}_i^2 + \sum_{i=1}^M \beta \mathbf{g}_i^2 - \sum_{i=1}^M \beta$	$\sum_{i=1}^{L} \mathbf{v}_{i}^{2}$ 3: A
9: $\mathbf{U} \leftarrow \mathbf{V}$	4: B
10: $\mathbf{d} \leftarrow \delta \mathbf{d} + \Delta_d + \lambda 1$	5: C
11: $\hat{\mathbf{g}} \leftarrow \sum_{i} \mathbf{g}_{i} + \lambda \boldsymbol{\mu}$	6: K
12: $\Delta_{\mu} \leftarrow \texttt{fast_inverse}(\hat{\mathbf{g}}, \mathbf{U}, \mathbf{d})$	7: y
13: $\boldsymbol{\mu} \leftarrow \boldsymbol{\mu} - lpha \Delta_{\mu}$	8: re
14: end while	
15: return μ , U , d	

lethods	SLANG	Full Gaussian
Exact	$L = 1 \ L = 5 \ L = 10$	EF Hess. Exact
0.341	0.342 0.339 0.338	0.340 0.339 0.338
0.195	0.033 0.008 0.002	0.000 0.000 0.000
0.339	0.339 0.339 0.339	0.339 0.339 0.339
1.295	0.305 0.173 0.118	0.014 0.000 0.000
0.138	0.132 0.132 0.131	0.131 0.130 0.130
7.083	1.492 0.755 0.448	0.180 0.001 0.000

SLANG	BBB	Dropout	SLANG
3.21 ± 0.19	$\textbf{-2.66}\pm\textbf{0.06}$	$\textbf{-2.46} \pm \textbf{0.06}$	$\textbf{-2.58}\pm0.05$
5.58 ± 0.19	$\textbf{-3.25}\pm0.02$	$\textbf{-3.04} \pm \textbf{0.02}$	$\textbf{-3.13}\pm\textbf{0.03}$
0.64 ± 0.03	$\textbf{-1.45}\pm0.10$	$\textbf{-1.99}\pm0.02$	$\textbf{-1.12} \pm \textbf{0.01}$
$\textbf{0.08} \pm \textbf{0.00}$	$\textbf{1.07} \pm \textbf{0.00}$	$\textbf{0.95} \pm \textbf{0.01}$	1.06 ± 0.00
$\textbf{0.00} \pm \textbf{0.00}$	$\textbf{4.61} \pm \textbf{0.01}$	$\textbf{3.80} \pm \textbf{0.01}$	$\textbf{4.76} \pm \textbf{0.00}$
4.16 ± 0.04	$\textbf{-2.86} \pm \textbf{0.01}$	$\textbf{-2.80} \pm \textbf{0.01}$	$\textbf{-2.84} \pm \textbf{0.01}$

SLANG					
= 4	L = 8	L = 16	L = 32		
81%	1.92%	1.77%	1.73%		

Larger *L* leads to better test

learning by weight-perturbation in Adam. In Proceedings of 35 ICML, pages 2611–2620, 2018.