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2University of British Columbia, Vancouver, Canada, 3École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Introduction
Motivation:

I Uncertainty estimation is essential to make reliable decisions based on
the predictions of deep models, but is computationally challenging.

I It is difficult to form even a Gaussian approximation to the posterior for
large deep models.

I Mean-field methods reduce the computational complexity, but yield poor
estimates of the uncertainty.

Contributions:
I We propose a new stochastic, low-rank, approximate

natural-gradient (SLANG) method for Gaussian variational inference.
I Our method estimates a “low-rank plus diagonal” covariance matrix

based solely on back-propagated gradients.
I SLANG is faster and more accurate than mean-field methods, and

performs comparably to state-of-the-art methods.

Natural Gradient Variational Inference
Given a deep model p(D|θ) with weights θ, Gaussian Variational
Inference computes a Gaussian approximation q(θ) := N (θ;µ,Σ) to
the posterior by maximizing the ELBO:

L(µ,Σ) = Eq

log p(D|θ)︸ ︷︷ ︸
Likelihood

+ logN (θ | 0, I/λ)︸ ︷︷ ︸
Prior

− log q(θ)︸ ︷︷ ︸
Approximation

 ,
Gradient-based methods optimize the ELBO using the stochastic
gradient updates (t is the iteration, γt is the learning rate)

µt+1 = µt − γt∇̂µLt, Σt+1 = Σt − γt∇̂ΣLt.

Gradient descent uses Euclidean geometry and may converge slowly.

Natural Gradient methods do steepest descent in the space of
realizable approximations q(θ) by optimizing on the Riemannian
manifold. This is expected to converge faster and gives the update [3]

µt+1 = µt − βtΣt+1∇̂µLt Σ−1
t+1 = (1− βt)Σ

−1
t + βt∇̂ΣLt.

Both methods require storing the covariance Σt, which is infeasible
for large models. We build upon Variational Online Gauss-Newton [4],
which can be modified to learn a low-rank approximation.

Variational Online Gauss-Newton approximates the Hessian with
the empirical Fisher Information matrix Ĝ(θt). This gives

µt+1 = µt − βtΣt+1
[
ĝ(θt) + λµt

]
Σ−1

t+1 = (1− βt)Σ
−1
t + βt

[
Ĝ(θt) + λI

]
,

where ĝ(θt) is the gradient and

Ĝ(θt) =
1
M

M∑
i=1

gi(θt)gi(θt)
>

is the empirical Fisher Information matrix for p(D | θt) computed with
a minibatch of size M and individual gradients gi(θt).

SLANG
We approximate the covariance with a ”low-rank plus diagonal” matrix

Σ−1
t ≈ Σ̂−1

t := UtU>t + Dt,

where Ut is a D × L matrix and Dt is diagonal. The cost of storing and
inverting this matrix is linear in D which is reasonable when L� D.
The approximate natural gradient update for Σ̂−1

t is

Σ̂−1
t+1 := Ut+1U>t+1 + Dt+1 ≈ (1− βt)Σ̂

−1
t + βt

[
Ĝ(θt) + λI

]
This update may increase the rank of Ut+1, so we project the matrix onto a
L-dimensional subspace using an eigenvalue decomposition:

(1− βt)Σ̂
−1
t + βt

[
Ĝ(θt) + λI

]
= (1− βt)UtU>t + βtĜ(θt)︸ ︷︷ ︸

Rank at most L + M

+ (1− βt)Dt + βtλI︸ ︷︷ ︸
Diagonal component

,

≈ Q1:LΛ1:LQ>1:L︸ ︷︷ ︸
Rank L eigendecomposition

+ (1− βt)Dt + βtλI︸ ︷︷ ︸
Diagonal component

.

+ = ≈

(1− β)UtU>t βG(θt)

fast eig

Ut+1U>t+1

The diagonal information lost in this projection is equal to

∆D = diag
[

(1− β)UtU>t + βtĜ(θt)− Ut+1U>t+1

]
.

We add this to Dt as a diagonal correction. The final SLANG update is

SLANG: Ut+1 = Q1:LΛ
1/2
1:L

Dt+1 = (1− β)Dt + βtλI + ∆D.

µt+1 = µt − αt

[
Ut+1U>t+1 + Dt+1

]−1 [
ĝ(θt) + λµt

]
.

The Algorithm
Pseudo-code for SLANG is shown in Algorithm 1. α, β are learning rates, D is
denoted with a vector d and uj and vj are the columns of U and V, respectively.

Algorithm 1: SLANG

Require: Data D, hyperparameters M,L, λ, α, β
1: Initialize µ,U,d
2: δ ← (1− β)
3: while not converged do
4: θ ← fast sample(µ,U,d)
5: M← sample a minibatch
6: [g1, ..,gM]← backprop(DM,θ)
7: V← fast eig(δu1, .., δuL, βg1, .., βgM,L)

8: ∆d ←
∑L

i=1 δu
2
i +

∑M
i=1 βg2

i −
∑L

i=1 v2
i

9: U← V
10: d← δd + ∆d + λ1
11: ĝ←

∑
i gi + λµ

12: ∆µ← fast inverse(ĝ,U,d)
13: µ← µ− α∆µ

14: end while
15: return µ, U, d

Algorithm 2: fast inverse(g,U,d)

1: A← (IL + U>d−1U)−1

2: y← d−1g− d−1UAU>d−1g
3: return y

Algorithm 3: fast sample(µ,U,d)

1: ε ∼ N (0, ID)

2: V← d−1/2 � U
3: A← Cholesky(V>V)
4: B← Cholesky(IL + V>V)
5: C← A−>(B− IL)A−1

6: K← (C + V>V)−1

7: y← d−1/2ε− VKV>ε
8: return µ + y

Results
Covariance Structure for Logististic Regression on USPS
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I SLANG doesn’t
underestimate
variance like
mean-field
methods.

Logistic Regression Results
I SLANG performs similarly to full-Gaussian methods at test time.

Mean-Field Methods SLANG Full Gaussian
Dataset Metrics EF Hess. Exact L = 1 L = 5 L = 10 EF Hess. Exact

Australian NLL 0.348 0.347 0.341 0.342 0.339 0.338 0.340 0.339 0.338
KL ( ×104) 2.240 2.030 0.195 0.033 0.008 0.002 0.000 0.000 0.000

a1a NLL 0.339 0.339 0.339 0.339 0.339 0.339 0.339 0.339 0.339
KL (×102) 2.590 2.208 1.295 0.305 0.173 0.118 0.014 0.000 0.000

USPS
3vs5

NLL 0.139 0.139 0.138 0.132 0.132 0.131 0.131 0.130 0.130
KL (×101) 7.684 7.188 7.083 1.492 0.755 0.448 0.180 0.001 0.000

Convergence Experiments
I SLANG converges faster than mean-field methods for logistic

regression and BNNs.

UCI Regression with Bayesian Neural Networks:
I Performance on BNNs is comparable to Bayesian Dropout [2] and

Bayes-by-Backprop [1].
Test RMSE Test log-likelihood

Dataset BBB Dropout SLANG BBB Dropout SLANG
Boston 3.43 ± 0.20 2.97 ± 0.19 3.21 ± 0.19 -2.66 ± 0.06 -2.46 ± 0.06 -2.58 ± 0.05
Concrete 6.16 ± 0.13 5.23 ± 0.12 5.58 ± 0.19 -3.25 ± 0.02 -3.04 ± 0.02 -3.13 ± 0.03
Energy 0.97 ± 0.09 1.66 ± 0.04 0.64 ± 0.03 -1.45 ± 0.10 -1.99 ± 0.02 -1.12 ± 0.01
Kin8nm 0.08 ± 0.00 0.10 ± 0.00 0.08 ± 0.00 1.07 ± 0.00 0.95 ± 0.01 1.06 ± 0.00
Naval 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 4.61 ± 0.01 3.80 ± 0.01 4.76 ± 0.00
Power 4.21 ± 0.03 4.02 ± 0.04 4.16 ± 0.04 -2.86 ± 0.01 -2.80 ± 0.01 -2.84 ± 0.01

MNIST Classification with Bayesian Neural Networks:
SLANG

BBB L = 1 L = 2 L = 4 L = 8 L = 16 L = 32
Test Error 1.82% 2.00% 1.95% 1.81% 1.92% 1.77% 1.73%

I Larger L leads
to better test
accuracy.
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