
“Adaptive” Optimization Methods
In gradient descent, using a step-size for each coordinate can give faster convergence.
“Adaptive” methods try to automatically find these step-sizes, and avoid tuning

Adaptive Algorithms try
to find a good matrix

automatically

Diagonal Matrix What does GOOD mean?

But there is often no definition of what “adaptive” means. This leads to methods with
weak or no guarantees even for the “simple” deterministic, smooth, strongly convex
f .
Online Learning Underperforms in Nice Problems
The only formal definition of adaptivity
comes from online learning (OL) with Ada-
Grad as the classic example. Since OL is ad-
versarial, AdaGrad underperforms on deter-
ministic, smooth, strongly convex problems.
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Defining our Goal: Optimal (Diagonal) Preconditioner
We define the optimal diagonal preconditioner P∗ as the one that guarantees the best
linear convergence rate for the method. This gives a condition between P and∇f 2(x).

Progress proportional to , i.e.,is big, i.e.,

for all

attains such that is diagonal and

The Scalar Case: Backtracking line-search
For a scalar step-size, we know how to automatically find a good step-size in smooth
problems, by starting with a large α and using a backtracking line-search

Optimal step-size At most    away

satisfies the sufficient progress condition:

From Line-search to Preconditioner Search
Goal: mimic the guarantees of a line-search when searching for P, checking

f (x− P∇f (x)) ≤ f (x)− ∥∇f (x)∥2P• Large progress: When P is accepted, its progress should be comparable to P∗
•Volume Shrinkage: Shrink volume of search space by a constant when P is rejected.
Curse of dimensionality
If P is rejected, removing only candidates Q ⪰ P does not remove enough volume.
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Optimal Per-Coordinate Step-Sizes
withMultidimensional Backtracking

Many optimizationmethods aim to be adaptive
but without defining what that means.
Adaptive algorithms from online learning(e.g., AdaGrad) need decreasing step-sizes,making them slow on simple problems.
We define adaptivity for simple problems(deterministic, smooth, strongly-convex) anddevelop Multidimensional Backtracking (MB),a generalization of a backtracking line-search that finds provably near-optimalper-coordinate step-sizes.
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Hypergradient as a Separating Hyperplane
The key idea to circumvent this problem is to use the gradient with respect to P

whereHyperplane induced by
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Overview of the Algorithm
With the hyperplane, we can build a cutting plane method to search for a good P

If     doesn't make progress, 
compute separating hyperplane

Compute new set with 
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Pick a preconditioner      
and try

Guarantees Through Cutting Planes
We develop efficient cutting plane methods by using the separating hyperplanes ob-
tained via hypergradient information and using the symmetry of the problem.
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Competitive with the optimal preconditioner
Multidimensional backtracking guarantees

Searching for a preconditioner
 has a cost

If there is a good preconditioner, then
convergence guarantees are better

The number of backtracking steps is O(d log(Lp0)) if P0 = p0I.

Empirical Performance
More stable than existing heuristics, still works in high dimensions (d = 106).
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