"Adaptive" Optimization Methods

In gradient descent, using a step-size for each coordinate can give faster convergence. "Adaptive" methods try to automatically find these step-sizes, and avoid tuning

Adaptive Algorithms try to find a **good** matrix automatically

What does **GOOD** mean?

But there is often no definition of what "adaptive" means. This leads to methods with weak or no guarantees even for the "simple" deterministic, smooth, strongly convex

Online Learning Underperforms in Nice Problems

The only formal definition of adaptivity comes from online learning (OL) with Ada- * **Grad** as the classic example. Since OL is ad- $\frac{1}{3}$ versarial, AdaGrad underperforms on deterministic, smooth, strongly convex problems.

Defining our Goal: Optimal (Diagonal) Preconditioner

We define the optimal diagonal preconditioner P_* as the one that guarantees the best linear convergence rate for the method. This gives a condition between **P** and $\nabla f^2(x)$.

The Scalar Case: Backtracking line-search

For a scalar step-size, we know how to automatically find a good step-size in smooth problems, by starting with a large α and using a backtracking line-search

satisfies the sufficient progress condition: $f(\mathbf{x} - \alpha \nabla f(\mathbf{x})) \le f(\mathbf{x}) - \alpha \frac{1}{2} \|\nabla f(\mathbf{x})\|_2^2$

From Line-search to Preconditioner Search

Goal: mimic the guarantees of a line-search when searching for **P**, checking $f(\mathbf{x} - \mathbf{P}\nabla f(\mathbf{x})) \le f(\mathbf{x}) - \|\nabla f(\mathbf{x})\|_{\mathbf{P}}^2$

- Large progress: When P is accepted, its progress should be comparable to P_*
- Volume Shrinkage: Shrink volume of search space by a constant when P is rejected.

Curse of dimensionality

If P is rejected, removing only candidates $\mathbf{Q} \succeq \mathbf{P}$ does not remove enough volume.

١	C
	J

AdaGrad	
AdaGrad	
nesearch	
80	100

2 P ,i.e.,	
$\ f(\mathbf{x})\ _{\mathbf{P}}^2$	

 $(1,\,1,\,1)$

Optimal Per-Coordinate Step-Sizes with Multidimensional Backtracking

Many optimization methods aim to be adaptive but without defining what that means.

algorithms from online Adaptive learning (e.g., AdaGrad) need decreasing step-sizes, making them slow on simple problems.

We define adaptivity for simple problems (deterministic, smooth, strongly-convex) and develop Multidimensional Backtracking (MB), generalization of a backtracking linea provably that finds near-optimal search per-coordinate step-sizes.

Frederik Kunstner Victor Sanches Portella Mark Schmidt Nick Harvey

UBCTHE UNIVERSITYOF BRITISH COLUMBIA

Canada CIFAR AI Chair (Amii) arxiv.org/pdf/2306.02527

Hypergradient as a Separating Hyperplane

The key idea to circumvent this problem is to use the gradient with respect to **P**

Guarantees Through Cutting Planes

We develop efficient cutting plane methods by using the separating hyperplanes obtained via hypergradient information and using the symmetry of the problem.

 $f(\mathbf{x}_t)$ Searching for a preconditioner has a **cost**

The number of backtracking steps is $O(d \log(Lp_0))$ if $\mathbf{P}_0 = p_0 \mathbf{I}$.

Empirical Performance

More stable than existing heuristics, still works in high dimensions ($d = 10^6$).

 $h(\mathbf{P}) = f(\mathbf{x}_t - \mathbf{P}\nabla f(\mathbf{x}_t)) - f(\mathbf{x}) + \frac{1}{2} \|\nabla f(\mathbf{x})\|_{\mathbf{P}}^2$

Overview of the Algorithm

With the hyperplane, we can build a cutting plane method to search for a good **P**

Competitive with the optimal preconditioner

Multidimensional backtracking guarantees

$$f_{t+1}) - f(\mathbf{x}_*) \le \left(\int_{t+1}^{t} f(\mathbf{x}_*) \right) \le f(\mathbf{x}_*)$$

 $\left(1 - \frac{1}{\sqrt{2d}} \frac{1}{\kappa_*}\right) \left(f(\mathbf{x}_t) - f(\mathbf{x}_*)\right)$ If there is a good preconditioner, then **convergence guarantees are better**

> -- Diag. Hessian+LS Diag. BB+NMLS Diag. AdaGrad+LS **RPROP** GD-HD (mult.)