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Abstract
Natural gradient descent uses the Fisher in-
formation matrix to adapt to the geometry.
Several works advocate for the empirical
Fisher approximation and draw connections
between second-order methods and heurist-
ics like Adam. We show that this approxima-
tion does not capture the problem geometry.
Natural Gradient Descent
Goal: learn the conditional distribution y | x;

L(θ) = −
∑

n log pθ(yn|xn)

Natural Gradient Descent: preconditioned
gradient update with the Fisher information F ,

θt+1 = θt− F (θt)−1∇L(θt)

The landscape of Fisher matrices
The Fisher of the joint pθ(x, y) = p(x)pθ(y|x) is

NEp(x)Epθ(y|x)
[
∇ log pθ(y|x)∇ log pθ(y|x)>

]
If p(x) is unknown, the Fisher of the condi-
tional pθ(y|xn) (empirical xn) also works;∑

nEpθ(y|xn)
[
∇ log pθ(y|xn)∇ log pθ(y|xn)>

]
But the empirical Fisher approximaton uses
the empirical yn;∑

n ∇ log pθ(yn|xn)∇ log pθ(yn|xn)>

The empirical Fisher is a bad preconditioner ...
GD NGD EF I The problem is ill conditioned;

Gradient descent struggles and
natural gradients adapt to the
geometry

I EF distorts direction and magnitude;
large gradient =⇒ small update
small gradient =⇒ large update

... which leads to bad behavior during optimization ...
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I Small update when gradient is large
=⇒ step-size tuning is hard

I Even if tuned, direction might fail;
can be opposite of natural gradient

... and can misestimate curvature, even at the minimum
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I EF should ≈ Fisher at the minimum
if model is well-specified
and there is enough data
=⇒ hard to check in advance.

I Large models can help;
more likely to be well-specified
but also need more data
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